
Production Systems:

Forward and Backward

Chaining

Motivations

• A production system consists of (1) a set of

production rules, (2) the working memory and

(3) the control structure.

• Previously, you saw exhaustive control

structure. Check all rules, one by one.

• This lecture considers forward chaining and

backward chaining for control structures.

Objectives

1. 8-puzzle as production system

2. Forward chaining

3. Backward chaining

4. Comparison

5. Prolog implementation of the farmer, wolf,

goat and cabbage problem

1. A set of production rules

• knowledge base

• condition/action pairs

• p(x) → q(x)

2. Working memory

• utility routines

• data structures, queues, stacks

3. Control structure

• recursive pattern-driven search

3 components of the production system

8-puzzle as a production system

1

2

3

8-puzzle searched by a production system

goal

Advantages of production systems

• Separation of Knowledge and Control

• A Natural Mapping onto State Space Search

• Pattern-Directed Control

• Opportunities for Heuristic Control of Search

• Tracing and Explanation

• Programming Language Independence

• A Plausible Model of Human Problem-Solving

Data-driven search: forward chaining

Fire the last

rule in the set.

1

2
3

start

goal

Forward chaining

Direction of search

Working memory contains

true states.

subgoals oldest untried rule

Rule 1

4

Goal-driven search: backward chaining

Backward

start

goal start

goal

Backward chaining

Direction of search

Working memory

contains goal and

sub-goal states waiting

to be satisfied (shown

true).

2 3

5

6

Rule 1

4

Forward chaining vs. backward chaining

• Data-driven, forward chaining

– Starts with the initial given data and
search for the goal.

– At each iteration, new conclusion
(RHS) becomes the pattern to look for
next

– Working memory contains true
sentences (RHS’s).

– Stop when the goal is reached.

• Goal-driven is the reverse.

– Starts with the goal and try to search
for the initial given data.

– At each iteration, new premise (LHS)
becomes the new subgoals, the
pattern to look for next

– working memory contains subgoals
(LHS’s) to be satisfied.

– Stop when all the premises (subgoals)
of fired productions are reached.

• Sense of the arrow is in reality reversed.

• Both repeatedly pick the next rule to fire.

Forward

chaining

Backward

chaining

Starts with premise conclusion

Search for conclusion premise

Working

memory

true

statements

subgoals

to be

proved

Stopping

criteria

goal is

reached

Initial data

are

reached

Data-

driven

Goal-

driven

condition action

premise conclusion

Combining forward- and backward-chaining

• Begin with data and search forward until the

number of states becomes unmanageably

large.

• Switch to goal-directed search to use

subgoals to guide state selection.

Bidirectional search better than unidirectional search

Bidirectional search worse than unidirectional search

Forward chaining and

backward chaining

misses each other.

Blackboard architecture for language understanding

• Layered production systems
• Separate productions into modules
• Each module (PS) is an agent -- knowledge source
• A single global structure -- blackboard

Spoken acoustic waveform signal

Parsed sentence (text)

Syllables

Word recognition

Conclusion

• Data-driven, forward chaining

– conditions first, then actions

– working memory contains true statements describing the

current environment

• Goal-driven, backward chaining

– actions first, then conditions (subgoals)

– working memory contains subgoals to be shown as true

• Mixed approach

– Start with data and go forward until frontier is too big

– Then start with goal and go backward

– Try to connect the two in the middle of the state space

• Prolog implementation of production systems requires

infinite loop detection.

• Break for 10 minutes.

• But you can start lab if you like.

Farmer, wolf, goat, and cabbage problem as a

production system

• Farmer, wolf, goat, and cabbage come to the edge of a river.

• A boat at the river’s edge. Only the farmer can row. The boat can
carry only two things, including the rower, at a time.

• If the wolf is ever left alone with the goat, the wolf will eat the goat.

• If the goat is left alone with the cabbage, the goat will eat the
cabbage.

• Devise a sequence of crossings of the river so that all four
characters arrives safely on the other side of the river.

• Representation

– Predicate state(F, W, G, C) describes the location of Farmer,
Wolf, Goat, and Cabbage.

– Possible locations are e for east, w for west, bank for each of the
4 variables.

– Initial state is state(w, w, w, w)

– Goal state is state(e, e, e, e)

Sample solution

State space graph including unsafe states

FW

F

FG

FW

FC

(F, W, G, C)

Prolog implementation

• Use list to represent a state or configuration

[Farmer, Wolf, Goat, Cabbage]

• Initially, the game begins

– everyone is on the West bank

– [w,w,w,w]

• Farmer takes the wolf across

– [e,e,w,w]

– Goat eats the cabbage

• Final configuration

– everyone is on the East bank

– [e,e,e,e]

Make a move

• In each move, the farmer crosses the river with
either the wolf, the goat, the cabbage, or nothing.

• Each move can be represented with a
corresponding atom

1. wolf

2. goat

3. cabbage

4. nothing

• Each move transforms one configuration into
another.

• move([w,w,w,w], wolf, [e,e,w,w]).

• move(Config, Move, NextConfig).

– Config and NextConfig are lists

– Move is a variable whose value is one of the 4
possible atoms.

8 possible movements

• When the wolf and the farmer move, the goat and the cabbage do not
change position.

1. move([w,w,Goat,Cabbage],wolf,[e,e,Goat,Cabbage]).

• Farmer and the wolf can go from East to West also.

2. move([e,e,Goat,Cabbage],wolf,[w,w,Goat,Cabbage]).

• Farmer takes goat

3. move([w,Wolf,w,Cabbage],goat,[e,Wolf,e,Cabbage]).

4. move([e,Wolf,e,Cabbage],goat,[w,Wolf,w,Cabbage]).

• Farmer takes cabbage

5. move([w,Wolf,Goat,w],cabbage,[e,Wolf,Goat,e]).

6. move([e,Wolf,Goat,e],cabbage,[w,Wolf,Goat,w]).

• Farmer takes nothing

7. move([w,Wolf,Goat,Cabbage],nothing,[e,Wolf,Goat,Cabbage]).

8. move([e,Wolf,Goat,Cabbage],nothing,[w,Wolf,Goat,Cabbage]).

Safety

• We need a predicate to decide whether a

configuration is safe or not.

• safe([Man,Wolf,Goat,Cabbage])

• Today's lab

Implementation so far

• Use list to represent a configuration (state)

• Make a move

– source configuration

– farmer takes a belonging or nothing across

the river from east to west or west to east

– destination configuration

• Predicate safe returns safety status of a

configuration

• Still, how to search for the sequence of

moves for the solution?

Search for the solution recursively

• solve([w,w,w,w], S)

• From initial configuration, search for a solution S.

• S is a list containing the sequence of belongings

taken by the farmer.

• Trivial case

– solve([e,e,e,e], []).

– If everything is on the east bank, stop recursion.

• Recursive case

– solve(Config, [NextMove | OtherMoves]) :-

 move(Config,NextMove,NextConfig),

 safe(NextConfig),

 solve(NextConfig, OtherMoves).

Infinite loop

• solve([w,w,w,w], S) would cause an infinite loop

– ERROR: Out of local stack

– Never reached the trivial case in the recursion

F

FG

FW

FC

Try farmer taking wolf.

Goat eats cabbage.

Unsafe.

Backtrack (Redo).
2

3

1

1,2,3,1,2,3,… (F, W, G, C)

Main program

• farmer(S) :- length(S,7), solve([w,w,w,w], S), !.

• Search for a solution recursively.

• Limit the length of the solution to 7 to avoid

infinite loop.

• Stop as soon as the first solution is found.

• ?- farmer(X).

• Be careful with the order of the predicates

• farmer(S) :- solve([w,w,w,w], S), length(S,7), !.

• ERROR: Out of local stack

